TheDeveloperBlog.com

Home | Contact Us

C-Sharp | Java | Python | Swift | GO | WPF | Ruby | Scala | F# | JavaScript | SQL | PHP | Angular | HTML

Types of Graphs

Types of Graphs with introduction, sets theory, types of sets, set operations, algebra of sets, multisets, induction, relations, functions and algorithms etc.

<< Back to TYPES

Types of Graphs:

1. Null Graph: A null graph is defined as a graph which consists only the isolated vertices.

Example: The graph shown in fig is a null graph, and the vertices are isolated vertices.

Types of Graphs

2. Undirected Graphs: An Undirected graph G consists of a set of vertices, V and a set of edge E. The edge set contains the unordered pair of vertices. If (u, v)∈E then we say u and v are connected by an edge where u and v are vertices in the set V.

Example: Let V = {1, 2, 3, 4} and E = {(1, 2), (1, 4), (3, 4), (2, 3)}.Draw the graph.

Solution: The graph can be drawn in several ways.

Two of which are as follows:

Types of Graphs

3. Multigraph: If in a graph multiple edges between the same set of vertices are allowed, it is known as Multigraph. In other words, it is a graph having at least one loop or multiple edges.

Types of Graphs

4. Directed Graphs: A directed graph or digraph G is defined as an unordered pair (V, E), where V is the set of points called vertices and E is the set of edges. Each edge in the graph G is assigned a direction and is identified with an ordered pair (u, v), where u is the initial vertex, and v is the end vertex.

Example: Consider the graph G = (V, E) as shown in fig. Determine the vertex set and edge set of graph G.

Types of Graphs

Solution: The vertex and edge set of graph G =(V, E) is as follow

                G={{1,2,3},{(1,2),(2,1),(2,2),(2,3),(1,3)}}.

5. Undirected Complete Graph: An undirected complete graph G=(V,E) of n vertices is a graph in which each vertex is connected to every other vertex i.e., and edge exist between every pair of distinct vertices. It is denoted by Kn.A complete graph with n vertices will have Types of Graphs edges.

Example: Draw Undirected Complete Graphs k4and k6.

Solution: The undirected complete graph of k4 is shown in fig1 and that of k6is shown in fig2.

Types of Graphs

6. Connected and Disconnected Graph:

Connected Graph: A graph is called connected if there is a path from any vertex u to v or vice-versa.

Disconnected Graph: A graph is called disconnected if there is no path between any two of its vertices.

Example: Consider the graph shown in fig. Determine whether the graphs are

(a)Disconnected Graph

(b)Connected Graph.

Also, write their connected components.

Types of Graphs

Solution:

(i) The graph is shown in fig is a Disconnected Graph, and its connected components are

            {V1,V2,V3,V4},{V5,V6,V7,V8} and {V9,V10}.

(ii) The graph shown in fig is a Disconnected Graph and its connected components are

            {V1,V2},{V3,V4},{V5,V6},{V7,V8},{V9,V10}and {V11,V12}.

Types of Graphs

(iii) The graph shown in fig is a connected graph.

Types of Graphs

7. Connected Component: A subgraph of graph G is called the connected component of G, if it is not contained in any bigger subgraph of G, which is connected. It is defined by listing its vertices.

Example: Consider the graph shown in fig. Determine its connected components.

Types of Graphs

Solution: The connected components of this graph is {a, b, c}, {d, e, f}, {g, h ,i} and {j}.

8. Directed Complete Graph: A directed complete graph G = (V, E) on n vertices is a graph in which each vertex is connected to every other vertex by an arrow. It is denoted by Kn.

Example: Draw directed complete graphs K3 and K5.

Solution: Place the number of vertices at the appropriate place and then draw an arrow from each vertex to every other vertex as shown in fig:

Types of Graphs
Types of Graphs

9. Complementary Graph: The complement of a graph G is defined to be a graph which has the same number of vertices as in graph G and has two vertices connected if and only they are not related in the graph.

Example: Consider the graph G shown in fig. Find the complement of this graph.

Types of Graphs

Solution: The complement of the above graph is shown in Fig:

Types of Graphs

10. Labeled Graphs: A graph G=(V, E) is called a labeled graph if its edges are labeled with some name or data. So, we can write these labels in place of an ordered pair in its edges set.

Example: The graph shown in fig is labeled graphs.

            G= {{a, b, c, d}, {e1,e2,e3,e4}}

Types of Graphs

11.Weighted Graphs: A graph G=(V, E) is called a weighted graph if each edge of graph G is assigned a positive number w called the weight of the edge e.

Example: The graph shown in fig is a Weighted Graph.

Types of Graphs




Related Links:


Related Links

Adjectives Ado Ai Android Angular Antonyms Apache Articles Asp Autocad Automata Aws Azure Basic Binary Bitcoin Blockchain C Cassandra Change Coa Computer Control Cpp Create Creating C-Sharp Cyber Daa Data Dbms Deletion Devops Difference Discrete Es6 Ethical Examples Features Firebase Flutter Fs Git Go Hbase History Hive Hiveql How Html Idioms Insertion Installing Ios Java Joomla Js Kafka Kali Laravel Logical Machine Matlab Matrix Mongodb Mysql One Opencv Oracle Ordering Os Pandas Php Pig Pl Postgresql Powershell Prepositions Program Python React Ruby Scala Selecting Selenium Sentence Seo Sharepoint Software Spellings Spotting Spring Sql Sqlite Sqoop Svn Swift Synonyms Talend Testng Types Uml Unity Vbnet Verbal Webdriver What Wpf