TheDeveloperBlog.com

Home | Contact Us

C-Sharp | Java | Python | Swift | GO | WPF | Ruby | Scala | F# | JavaScript | SQL | PHP | Angular | HTML

Binary Relation

Binary Relation with introduction, sets theory, types of sets, set operations, algebra of sets, multisets, induction, relations, functions and algorithms etc.

<< Back to BINARY

Binary Relation

Let P and Q be two non- empty sets. A binary relation R is defined to be a subset of P x Q from a set P to Q. If (a, b) ∈ R and R ⊆ P x Q then a is related to b by R i.e., aRb. If sets P and Q are equal, then we say R ⊆ P x P is a relation on P e.g.

(i) Let A = {a, b, c}
      B = {r, s, t}
Then R = {(a, r), (b, r), (b, t), (c, s)}
is a relation from A to B.

(ii) Let A = {1, 2, 3} and B = A
         R = {(1, 1), (2, 2), (3, 3)}
is a relation (equal) on A.

Example1: If a set has n elements, how many relations are there from A to A.

Solution: If a set A has n elements, A x A has n2 elements. So, there are 2n2 relations from A to A.

Example2: If A has m elements and B has n elements. How many relations are there from A to B and vice versa?

Solution: There are m x n elements; hence there are 2m x n relations from A to A.

Example3: If a set A = {1, 2}. Determine all relations from A to A.

Solution: There are 22= 4 elements i.e., {(1, 2), (2, 1), (1, 1), (2, 2)} in A x A. So, there are 24= 16 relations from A to A. i.e.

     {(1, 2), (2, 1), (1, 1), (2, 2)}, {(1, 2), (2, 1)}, {(1, 2), (1, 1)}, {(1, 2), (2, 2)},
{(2, 1), (1, 1)},{(2,1), (2, 2)}, {(1, 1),(2, 2)},{(1, 2), (2, 1), (1, 1)}, {(1, 2), (1, 1),
(2, 2)}, {(2,1), (1, 1), (2, 2)}, {(1, 2), (2, 1), (2, 2)}, {(1, 2), (2, 1), (1, 1), (2, 2)} and ∅.

Domain and Range of Relation

Domain of Relation: The Domain of relation R is the set of elements in P which are related to some elements in Q, or it is the set of all first entries of the ordered pairs in R. It is denoted by DOM (R).

Range of Relation: The range of relation R is the set of elements in Q which are related to some element in P, or it is the set of all second entries of the ordered pairs in R. It is denoted by RAN (R).

Example:

Let A = {1, 2, 3, 4}
    B = {a, b, c, d}
    R = {(1, a), (1, b), (1, c), (2, b), (2, c), (2, d)}.

Solution:

DOM (R) = {1, 2}
RAN (R) = {a, b, c, d}

Complement of a Relation

Consider a relation R from a set A to set B. The complement of relation R denoted by R is a relation from A to B such that

  R = {(a, b): {a, b) ∉ R}.

Example:

Consider the relation R from X to Y
		X = {1, 2, 3}
		Y = {8, 9}
		R = {(1, 8) (2, 8) (1, 9) (3, 9)}
Find the complement relation of R.

Solution:

X x Y = {(1, 8), (2, 8), (3, 8), (1, 9), (2, 9), (3, 9)}
 Now we find the complement relation  R from X x Y
   R = {(3, 8), (2, 9)}





Related Links:


Related Links

Adjectives Ado Ai Android Angular Antonyms Apache Articles Asp Autocad Automata Aws Azure Basic Binary Bitcoin Blockchain C Cassandra Change Coa Computer Control Cpp Create Creating C-Sharp Cyber Daa Data Dbms Deletion Devops Difference Discrete Es6 Ethical Examples Features Firebase Flutter Fs Git Go Hbase History Hive Hiveql How Html Idioms Insertion Installing Ios Java Joomla Js Kafka Kali Laravel Logical Machine Matlab Matrix Mongodb Mysql One Opencv Oracle Ordering Os Pandas Php Pig Pl Postgresql Powershell Prepositions Program Python React Ruby Scala Selecting Selenium Sentence Seo Sharepoint Software Spellings Spotting Spring Sql Sqlite Sqoop Svn Swift Synonyms Talend Testng Types Uml Unity Vbnet Verbal Webdriver What Wpf