TheDeveloperBlog.com

Home | Contact Us

C-Sharp | Java | Python | Swift | GO | WPF | Ruby | Scala | F# | JavaScript | SQL | PHP | Angular | HTML

Discrete Mathematics Group

Discrete Mathematics Group with introduction, sets theory, types of sets, set operations, algebra of sets, multisets, induction, relations, functions and algorithms etc.

<< Back to DISCRETE

Group:

Let G be a non-void set with a binary operation * that assigns to each ordered pair (a, b) of elements of G an element of G denoted by a * b. We say that G is a group under the binary operation * if the following three properties are satisfied:

1) Associativity: The binary operation * is associative i.e. a*(b*c)=(a*b)*c , ∀ a,b,c ∈ G

2) Identity: There is an element e, called the identity, in G, such that a*e=e*a=a, ∀ a ∈ G

3) Inverse: For each element a in G, there is an element b in G, called an inverse of a such that a*b=b*a=e, ∀ a, b ∈ G

Note: If a group has the property that a*b=b*a i.e., commutative law holds then the group is called an abelian.

Properties of Groups:

The following theorems can understand the elementary features of Groups:

Theorem1:-

1. Statement: - In a Group G, there is only one identity element (uniqueness of identity) Proof: - let e and e' are two identities in G and let a ∈ G

∴ ae = a ⟶(i)
∴ ae' = a ⟶(ii)

R.H.S of (i) and (ii) are equal ⇒ae =ae'

Thus by the left cancellation law, we obtain e= e'

There is only one identity element in G for any a ∈ G. Hence the theorem is proved.

2. Statement: - For each element a in a group G, there is a unique element b in G such that ab= ba=e (uniqueness if inverses)

Proof: - let b and c are both inverses of a a∈ G

Then ab = e and ac = e
∵ c = ce {existence of identity element}
⟹ c = c (ab) {∵ ab = e}
⟹ c = (c a) b
⟹ c = (ac) b { ∵ ac = ca}
⟹ c = eb
⟹ c = b { ∵ b = eb}

Hence inverse of a G is unique.

Theorem 2:-

1. Statement: - In a Group G,(a-1)-1=a,∀ a∈ G

Proof: We have a a-1=a-1 a=e

Where e is the identity element of G

Thus a is inverse of a-1∈ G

i.e., (a-1)-1=a,∀ a∈ G

2. Statement: In a Group G,(a b-1)=b-1 a-1,∀ a,b∈ G

Proof: - By associatively we have

(b-1 a-1)ab=b-1 (a-1 a)b
⟹(b-1 a-1)ab=b-1 (e)b         {∵a-1 a=e}
⟹(b-1 a-1)ab=b-1 b         {∵eb=b}
⟹(b-1 a-1)ab=e,         {∵b-1 b=e}

Similarly

(ab) (b-1 a-1)=a(b b-1) a-1
⟹(ab) (b-1 a-1)=a (e) a-1
⟹(ab) (b-1 a-1)=a a-1
⟹(ab) (b-1 a-1)=e         {∵aa-1=e}
Thus ( b-1 a-1)ab=(ab)(b-1 a-1)=e
∴ b-1 a-1 is the inverse of ab
i.e., b-1 a-1= a b-1

Hence the theorem is proved.

Theorem3:-

In a group G, the left and right cancellation laws hold i.e.

(i) ab = ac implies         b=c

(ii) ba=ca implies         b=c

Proof

(i) Let ab=ac
Premultiplying a-1 on both sides we get
        a-1 (ab)=a-1 (ac)
        ⟹ (a-1a) b=(a-1 a)c
        ⟹eb=ec
        ⟹b=c

Hence Proved.

(ii) Let ba=ca
Post-multiplying a-1 on both sides
        ⟹(ba) a-1=(ca) a-1
        ⟹b(aa-1 )=c(aa-1 )
        ⟹be=ce
        ⟹b=c

Hence the theorem is proved.

Finite and Infinite Group:

A group (G, *) is called a finite group if G is a finite set.

A group (G, *) is called a infinite group if G is an infinite set.

Example1: The group (I, +) is an infinite group as the set I of integers is an infinite set.

Example2: The group G = {1, 2, 3, 4, 5, 6, 7} under multiplication modulo 8 is a finite group as the set G is a finite set.

Order of Group:

The order of the group G is the number of elements in the group G. It is denoted by |G|. A group of order 1 has only the identity element, i.e., ({e} *).

A group of order 2 has two elements, i.e., one identity element and one some other element.

Example1: Let ({e, x}, *) be a group of order 2. The table of operation is shown in fig:

* e x
e e x
x x e

The group of order 3 has three elements i.e., one identity element and two other elements.


Next TopicSubGroup




Related Links:


Related Links

Adjectives Ado Ai Android Angular Antonyms Apache Articles Asp Autocad Automata Aws Azure Basic Binary Bitcoin Blockchain C Cassandra Change Coa Computer Control Cpp Create Creating C-Sharp Cyber Daa Data Dbms Deletion Devops Difference Discrete Es6 Ethical Examples Features Firebase Flutter Fs Git Go Hbase History Hive Hiveql How Html Idioms Insertion Installing Ios Java Joomla Js Kafka Kali Laravel Logical Machine Matlab Matrix Mongodb Mysql One Opencv Oracle Ordering Os Pandas Php Pig Pl Postgresql Powershell Prepositions Program Python React Ruby Scala Selecting Selenium Sentence Seo Sharepoint Software Spellings Spotting Spring Sql Sqlite Sqoop Svn Swift Synonyms Talend Testng Types Uml Unity Vbnet Verbal Webdriver What Wpf