TheDeveloperBlog.com

Home | Contact Us

C-Sharp | Java | Python | Swift | GO | WPF | Ruby | Scala | F# | JavaScript | SQL | PHP | Angular | HTML

Discrete Mathematics SubGroup

Discrete Mathematics SubGroup with introduction, sets theory, types of sets, set operations, algebra of sets, multisets, induction, relations, functions and algorithms etc.

<< Back to DISCRETE

Subgroup:

If a non-void subset H of a group G is itself a group under the operation of G, we say H is a subgroup of G.

Theorem: - A subset H of a group G is a subgroup of G if:

  • the identity element a∈ H.
  • H is closed under the operation of G i.e. if a, b∈ H, then a, b∈ H and
  • H is closed under inverses, that is if a∈ H then a-1∈ H.

Cyclic Subgroup:-

A Subgroup K of a group G is said to be cyclic subgroup if there exists an element x∈ G such that every element of K can be written in the form xn for some n ∈Z.

The element x is called generator of K and we write K= <x>

Cyclic Group:-

In the case when G=, we say G is cyclic and x is a generator of G. That is, a group G is said to be cyclic if there is an element x∈ G such that every element of G can be written in the form xn for the some n∈ Z.

Example: The group G= {1, -1, i,-i} under usual multiplication is a finite cyclic group with i as generator, since i1=i,i2=-1,i3=-i and i4=1

Abelian Group:

Let us consider an algebraic system (G,*), where * is a binary operation on G. Then the system (G,*) is said to be an abelian group if it satisfies all the properties of the group plus a additional following property:

(1) The operation * is commutative i.e.,
a * b = b * a ∀ a,b ∈G

Example: Consider an algebraic system (G, *), where G is the set of all non-zero real numbers and * is a binary operation defined by

Subgroup

Show that (G, *) is an abelian group.

Solution:

Closure Property: The set G is closed under the operation *, since a * b = Subgroup is a real number. Hence, it belongs to G.

Associative Property: The operation * is associative. Let a,b,c∈G, then we have

Subgroup

Identity: To find the identity element, let us assume that e is a +ve real number. Then e * a = a, where a ∈G.

Subgroup

Thus, the identity element in G is 4.

Inverse: let us assume that a ∈G. If a-1∈Q, is an inverse of a, then a * a-1=4

Subgroup

Thus, the inverse of element a in G isSubgroup

Commutative: The operation * on G is commutative.

Subgroup

Thus, the algebraic system (G, *) is closed, associative, identity element, inverse and commutative. Hence, the system (G, *) is an abelian group.

Product of Groups:

Theorem: Prove that if (G1,*1)and (G2,*2) are groups, then G = G1 x G2 i.e., (G, *) is a group with operation defined by (a1,b1)*( a2,b2 )=(a1,*1,a2, b1 *2 b2).

Proof: To prove that G1 x G2 is a group, we have to show that G1 x G2 has the associativity operator, has an identity and also exists inverse of every element.

Associativity. Let a, b, c ∈ G1 x G2,then

So,        a * (b * c) = (a1,a2 )*((b1,b2)*(c1,c2))
                = (a1,a2 )*(b1 *1 c1,b2 *2 c2)
                = (a1 *1 (b1 *1 c1 ),a2 *2 (b2 *2 c2)
                = ((a1 *1 b1) *1 c1,( a2 *2 b2) *2 c2)
                = (a1 *1 b1,a2 *2 b2)*( c1,c2)
                = ((a1,a2)*( b1,b2))*( c1,c2)
                = (a * b) * c.

Identity: Let e1 and e2 are identities for G1 and G2 respectively. Then, the identity for G1 x G2 is e=(e1,e2 ).Assume same a ∈ G1 x G2

Then,        a * e = (a1,a2)*( e1,e2)
                = (a1 *1 e1,a2 *2 e2)
                = (a1,a2)=a

Similarly, we have e * a = a.

Inverse: To determine the inverse of an element in G1 x G2, we will determine it component wise i.e.,
                a-1=(a1,a2)-1=(a1-1,a2-1 )

Now to verify that this is the exact inverse, we will compute a * a-1 and a-1*a.

Now,         a * a-1=(a1,a2 )*(a1-1,a2-1 )
                = (a1 *1 a1-1,a2 *2 a2-1)=( e1,e2)=e

Similarly, we have a-1*a=e.

Thus, (G1 x G2,*) is a group.

In general, if G1,G2,....Gn are groups, then G = G1 x G2 x.....x Gn is also a group.

Cosets:

Let H be a subgroup of a group G. A left coset of H in G is a subset of G whose elements may be expressed as xH={ xh | h ∈ H } for any x∈ G. The element x is called a representation of the coset. Similarly, a right coset of H in G is a subset that may be expressed as Hx= {hx | h ∈H } , for any x∈G. Thus complexes xH and Hx are called respectively a left coset and a right coset.

If the group operation is additive (+) then a left coset is denoted as x + H={x+h | h ∈H} and a right coset is denoted by H + x = {h+x | h ∈ H}


Next TopicNormal Subgroup




Related Links:


Related Links

Adjectives Ado Ai Android Angular Antonyms Apache Articles Asp Autocad Automata Aws Azure Basic Binary Bitcoin Blockchain C Cassandra Change Coa Computer Control Cpp Create Creating C-Sharp Cyber Daa Data Dbms Deletion Devops Difference Discrete Es6 Ethical Examples Features Firebase Flutter Fs Git Go Hbase History Hive Hiveql How Html Idioms Insertion Installing Ios Java Joomla Js Kafka Kali Laravel Logical Machine Matlab Matrix Mongodb Mysql One Opencv Oracle Ordering Os Pandas Php Pig Pl Postgresql Powershell Prepositions Program Python React Ruby Scala Selecting Selenium Sentence Seo Sharepoint Software Spellings Spotting Spring Sql Sqlite Sqoop Svn Swift Synonyms Talend Testng Types Uml Unity Vbnet Verbal Webdriver What Wpf