C-Sharp | Java | Python | Swift | GO | WPF | Ruby | Scala | F# | JavaScript | SQL | PHP | Angular | HTML
OpenCV Canny Edge DetectionEdge detection is term where identify the boundary of object in image. We will learn about the edge detection using the canny edge detection technique. The syntax is canny edge detection function is given as: edges = cv2.Canny('/path/to/img', minVal, maxVal, apertureSize, L2gradient) Parameters-
Example: 1import cv2 img = cv2.imread(r'C:\Users\DEVANSH SHARMA\cat_16x9.jpg') edges = cv2.Canny(img, 100, 200) cv2.imshow("Edge Detected Image", edges) cv2.imshow("Original Image", img) cv2.waitKey(0) # waits until a key is pressed cv2.destroyAllWindows() # destroys the window showing image Output: Example: Real Time Edge detection# import libraries of python OpenCV import cv2 # import Numpy by alias name np import numpy as np # capture frames from a camera cap = cv2.VideoCapture(0) # loop runs if capturing has been initialized while (1): # reads frames from a camera ret, frame = cap.read() # converting BGR to HSV hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # define range of red color in HSV lower_red = np.array([30, 150, 50]) upper_red = np.array([255, 255, 180]) # create a red HSV colour boundary and # threshold HSV image mask = cv2.inRange(hsv, lower_red, upper_red) # Bitwise-AND mask and original image res = cv2.bitwise_and(frame, frame, mask=mask) # Display an original image cv2.imshow('Original', frame) # discovers edges in the input image image and # marks them in the output map edges edges = cv2.Canny(frame, 100, 200) # Display edges in a frame cv2.imshow('Edges', edges) # Wait for Esc key to stop k = cv2.waitKey(5) & 0xFF if k == 27: break # Close the window cap.release() # De-allocate any associated memory usage cv2.destroyAllWindows() Output:
Next TopicOpenCV Blur
|