TheDeveloperBlog.com

Home | Contact Us

C-Sharp | Java | Python | Swift | GO | WPF | Ruby | Scala | F# | JavaScript | SQL | PHP | Angular | HTML

Computer Graphics 3D Transformations

Computer Graphics 3D Transformations with Computer Graphics Tutorial, Line Generation Algorithm, 2D Transformation, 3D Computer Graphics, Types of Curves, Surfaces, Computer Animation, Animation Techniques, Keyframing, Fractals etc.

<< Back to COMPUTER

Three Dimensional Transformations

The geometric transformations play a vital role in generating images of three Dimensional objects with the help of these transformations. The location of objects relative to others can be easily expressed. Sometimes viewpoint changes rapidly, or sometimes objects move in relation to each other. For this number of transformation can be carried out repeatedly.

Translation

It is the movement of an object from one position to another position. Translation is done using translation vectors. There are three vectors in 3D instead of two. These vectors are in x, y, and z directions. Translation in the x-direction is represented using Tx. The translation is y-direction is represented using Ty. The translation in the z- direction is represented using Tz.

If P is a point having co-ordinates in three directions (x, y, z) is translated, then after translation its coordinates will be (x1 y1 z1) after translation. Tx Ty Tz are translation vectors in x, y, and z directions respectively.

          x1=x+ Tx
          y1=y+Ty
          z1=z+ Tz

Three-dimensional transformations are performed by transforming each vertex of the object. If an object has five corners, then the translation will be accomplished by translating all five points to new locations. Following figure 1 shows the translation of point figure 2 shows the translation of the cube.

Three Dimensional Transformations
Three Dimensional Transformations

Matrix for translation

Three Dimensional Transformations

Matrix representation of point translation

Point shown in fig is (x, y, z). It become (x1,y1,z1) after translation. Tx Ty Tz are translation vector.

Three Dimensional Transformations

Example: A point has coordinates in the x, y, z direction i.e., (5, 6, 7). The translation is done in the x-direction by 3 coordinate and y direction. Three coordinates and in the z- direction by two coordinates. Shift the object. Find coordinates of the new position.

Solution: Co-ordinate of the point are (5, 6, 7)
                 Translation vector in x direction = 3
                 Translation vector in y direction = 3
                 Translation vector in z direction = 2
                 Translation matrix is
                 Three Dimensional Transformations

Multiply co-ordinates of point with translation matrix

Three Dimensional Transformations

                 = [5+0+0+30+6+0+30+0+7+20+0+0+1] = [8991]

x becomes x1=8
y becomes y1=9
z becomes z1=9


Next Topic3D Scaling




Related Links:


Related Links

Adjectives Ado Ai Android Angular Antonyms Apache Articles Asp Autocad Automata Aws Azure Basic Binary Bitcoin Blockchain C Cassandra Change Coa Computer Control Cpp Create Creating C-Sharp Cyber Daa Data Dbms Deletion Devops Difference Discrete Es6 Ethical Examples Features Firebase Flutter Fs Git Go Hbase History Hive Hiveql How Html Idioms Insertion Installing Ios Java Joomla Js Kafka Kali Laravel Logical Machine Matlab Matrix Mongodb Mysql One Opencv Oracle Ordering Os Pandas Php Pig Pl Postgresql Powershell Prepositions Program Python React Ruby Scala Selecting Selenium Sentence Seo Sharepoint Software Spellings Spotting Spring Sql Sqlite Sqoop Svn Swift Synonyms Talend Testng Types Uml Unity Vbnet Verbal Webdriver What Wpf