C-Sharp | Java | Python | Swift | GO | WPF | Ruby | Scala | F# | JavaScript | SQL | PHP | Angular | HTML
Pandas DataFrame.aggregate()The main task of DataFrame.aggregate() function is to apply some aggregation to one or more column. Most frequently used aggregations are: sum: It is used to return the sum of the values for the requested axis. min: It is used to return the minimum of the values for the requested axis. max: It is used to return the maximum values for the requested axis. Syntax:DataFrame.aggregate(func, axis=0, *args, **kwargs) Parameters:func: It refers callable, string, dictionary, or list of string/callables. It is used for aggregating the data. For a function, it must either work when passed to a DataFrame or DataFrame.apply(). For a DataFrame, it can pass a dict, if the keys are the column names. axis: (default 0): It refers to 0 or 'index', 1 or 'columns' 0 or 'index': It is an apply function for each column. 1 or 'columns': It is an apply function for each row. *args: It is a positional argument that is to be passed to func. **kwargs: It is a keyword argument that is to be passed to the func. Returns:It returns the scalar, Series or DataFrame. scalar: It is being used when Series.agg is called with the single function. Series: It is being used when DataFrame.agg is called for the single function. DataFrame: It is being used when DataFrame.agg is called for the several functions. Example:import pandas as pd import numpy as np info=pd.DataFrame([[1,5,7],[10,12,15],[18,21,24],[np.nan,np.nan,np.nan]],columns=['X','Y','Z']) info.agg(['sum','min']) Output: X Y Z sum 29.0 38.0 46.0 min 1.0 5.0 7.0 Example2:import pandas as pd import numpy as np info=pd.DataFrame([[1,5,7],[10,12,15],[18,21,24],[np.nan,np.nan,np.nan]],columns=['X','Y','Z']) df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']}) Output: X Y max NaN 21.0 min 1.0 12.0 sum 29.0 NaN
Next TopicDataFrame.assign()
|