C-Sharp | Java | Python | Swift | GO | WPF | Ruby | Scala | F# | JavaScript | SQL | PHP | Angular | HTML
Pandas DataFrame.fillna()We can use the fillna() function to fill the null values in the dataset. Syntax:DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs) Parameters:
Returns:It returns an object in which the missing values are being filled. Example1:import pandas as pd # Create a dataframe info = pd.DataFrame(data={'x':[10,20,30,40,50,None]}) print(info) # Fill null value to dataframe using 'inplace' info.fillna(value=0, inplace=True) print(info) Output x 0 10.0 1 20.0 2 30.0 3 40.0 4 50.0 5 NaN x 0 10.0 1 20.0 2 30.0 3 40.0 4 50.0 5 0.0 Example2:The below code is responsible for filling the DataFrame that consist some NaN values. import pandas as pd # Create a dataframe info = pd.DataFrame([[np.nan,np.nan, 20, 0], [1, np.nan, 4, 1], [np.nan, np.nan, np.nan, 5], [np.nan, 20, np.nan, 2]], columns=list('ABCD')) info Output A B C D 0 NaN NaN 20.0 0 1 1.0 NaN 4.0 1 2 NaN NaN NaN 5 3 NaN 20.0 NaN 2 Example3:In below code, we have used the fillna function to fill in some of the NaN values only. info = pd.DataFrame([[np.nan,np.nan, 20, 0], [1, np.nan, 4, 1], [np.nan, np.nan, np.nan, 5], [np.nan, 20, np.nan, 2]], columns=list('ABCD')) info info.fillna(0) info.fillna(method='ffill') values = {'A': 0, 'B': 1, 'C': 2, 'D': 3} info.fillna(value=values) info.fillna(value=values, limit=1) Output A B C D 0 0.0 1.0 20.0 0 1 1.0 NaN 4.0 1 2 NaN NaN 2.0 5 3 NaN 20.0 NaN 2
Next TopicDataFrame.replace()
|