C-Sharp | Java | Python | Swift | GO | WPF | Ruby | Scala | F# | JavaScript | SQL | PHP | Angular | HTML
Pandas Series.std()The Pandas std() is defined as a function for calculating the standard deviation of the given set of numbers, DataFrame, column, and rows. In respect to calculate the standard deviation, we need to import the package named "statistics" for the calculation of median. The standard deviation is normalized by N-1 by default and can be changed using the ddof argument. Syntax:Series.std(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs) Parameters:
Returns:It returns Series or DataFrame if the level is specified. Example1:import pandas as pd # calculate standard deviation import numpy as np print(np.std([4,7,2,1,6,3])) print(np.std([6,9,15,2,-17,15,4])) Output 2.1147629234082532 10.077252622027656 Example2:import pandas as pd import numpy as np #Create a DataFrame info = { 'Name':['Parker','Smith','John','William'], 'sub1_Marks':[52,38,42,37], 'sub2_Marks':[41,35,29,36]} data = pd.DataFrame(info) data # standard deviation of the dataframe data.std() Output sub1_Marks 6.849574 sub2_Marks 4.924429 dtype: float64
Next TopicSeries.to_frame()
|