C-Sharp | Java | Python | Swift | GO | WPF | Ruby | Scala | F# | JavaScript | SQL | PHP | Angular | HTML
Program to display the lower triangular matrix
ExplanationIn this program, we need to display the lower triangular matrix. Lower Triangular MatrixLower triangular matrix is a square matrix in which all the elements above the principle diagonal will be zero. To find the lower triangular matrix, a matrix needs to be a square matrix that is, number of rows and columns in the matrix needs to be equal. Dimensions of a typical square matrix can be represented by n x n.
Consider the above example, principle diagonal element of given matrix is (1, 6, 6). All the elements above diagonal needs to be made zero. In our example, those elements are at positions (1,2), (1,3) and (2,3). To convert given matrix into the lower triangular matrix, loop through the matrix and set the values of the element to zero where column number is greater than row number. Algorithm
SolutionPython
#Initialize matrix a
a = [
[1, 2, 3],
[8, 6, 4],
[4, 5, 6]
];
#Calculates number of rows and columns present in given matrix
rows = len(a);
cols = len(a[0]);
if(rows != cols):
print("Matrix should be a square matrix");
else:
#Performs required operation to convert given matrix into lower triangular matrix
print("Lower triangular matrix: ");
for i in range(0, rows):
for j in range(0, cols):
if(j > i):
print("0"),
else:
print(a[i][j]),
print(" ");
Output: Lower triangular matrix: 1 0 0 8 6 0 4 5 6 C
#include <stdio.h>
int main()
{
int rows, cols;
//Initialize matrix a
int a[][3] = {
{1, 2, 3},
{8, 6, 4},
{4, 5, 6}
};
//Calculates number of rows and columns present in given matrix
rows = (sizeof(a)/sizeof(a[0]));
cols = (sizeof(a)/sizeof(a[0][0]))/rows;
if(rows != cols){
printf("Matrix should be a square matrix\n");
}
else{
//Performs required operation to convert given matrix into lower triangular matrix
printf("Lower triangular matrix: \n");
for(int i = 0; i < rows; i++){
for(int j = 0; j < cols; j++){
if(j > i)
printf("0 ");
else
printf("%d ", a[i][j]);
}
printf("\n");
}
}
return 0;
}
Output: Lower triangular matrix: 1 0 0 8 6 0 4 5 6 JAVA
public class LowerTriangular
{
public static void main(String[] args) {
int rows, cols;
//Initialize matrix a
int a[][] = {
{1, 2, 3},
{8, 6, 4},
{4, 5, 6}
};
//Calculates number of rows and columns present in given matrix
rows = a.length;
cols = a[0].length;
if(rows != cols){
System.out.println("Matrix should be a square matrix");
}
else {
//Performs required operation to convert given matrix into lower triangular matrix
System.out.println("Lower triangular matrix: ");
for(int i = 0; i < rows; i++){
for(int j = 0; j < cols; j++){
if(j > i)
System.out.print("0 ");
else
System.out.print(a[i][j] + " ");
}
System.out.println();
}
}
}
}
Output: Lower triangular matrix: 1 0 0 8 6 0 4 5 6 C#
using System;
public class LowerTriangular
{
public static void Main()
{
int rows, cols;
//Initialize matrix a
int[,] a = {
{1, 2, 3},
{8, 6, 4},
{4, 5, 6}
};
//Calculates number of rows and columns present in given matrix
rows = a.GetLength(0);
cols = a.GetLength(1);
if(rows != cols){
Console.WriteLine("Matrix should be a square matrix");
}
else {
//Performs required operation to convert given matrix into lower triangular matrix
Console.WriteLine("Lower triangular matrix: ");
for(int i = 0; i < rows; i++){
for(int j = 0; j < cols; j++){
if(j > i)
Console.Write("0 ");
else
Console.Write(a[i,j] + " ");
}
Console.WriteLine();
}
}
}
}
Output: Lower triangular matrix: 1 0 0 8 6 0 4 5 6 PHP
<!DOCTYPE html>
<html>
<body>
<?php
//Initialize matrix a
$a = array(
array(1, 2, 3),
array(8, 6, 4),
array(4, 5, 6)
);
//Calculates number of rows and columns present in given matrix
$rows = count($a);
$cols = count($a[0]);
if($rows != $cols){
print("Matrix should be a square matrix <br>");
}
else {
//Performs required operation to convert given matrix into lower triangular matrix
print("Lower triangular matrix: <br>");
for($i = 0; $i < $rows; $i++){
for($j = 0; $j < $cols; $j++){
if($j > $i)
print("0 ");
else
print($a[$i][$j] . " ");
}
print("<br>");
}
}
?>
</body>
</html>
Output: Lower triangular matrix: 1 0 0 8 6 0 4 5 6
Next Topic#
|