C-Sharp | Java | Python | Swift | GO | WPF | Ruby | Scala | F# | JavaScript | SQL | PHP | Angular | HTML
Q. Program to find the maximum and minimum value node from a doubly linked list.ExplanationIn this program, we will create a doubly linked list then, iterate through the list to find out the minimum and maximum node. We will maintain two variables min and max. Min will hold the minimum value node, and max will hold the maximum value node. In above example, 1 will be the minimum value node and 9 will be the maximum value node. Algorithm
SolutionPython#Represent a node of doubly linked list class Node: def __init__(self,data): self.data = data; self.previous = None; self.next = None; class MinMax: #Represent the head and tail of the doubly linked list def __init__(self): self.head = None; self.tail = None; #addNode() will add a node to the list def addNode(self, data): #Create a new node newNode = Node(data); #If list is empty if(self.head == None): #Both head and tail will point to newNode self.head = self.tail = newNode; #head's previous will point to None self.head.previous = None; #tail's next will point to None, as it is the last node of the list self.tail.next = None; else: #newNode will be added after tail such that tail's next will point to newNode self.tail.next = newNode; #newNode's previous will point to tail newNode.previous = self.tail; #newNode will become new tail self.tail = newNode; #As it is last node, tail's next will point to None self.tail.next = None; #MinimumNode() will find out minimum value node in the list def minimumNode(self): #Node current will point to head current = self.head; #Checks if list is empty if(self.head == None): print("List is empty"); return 0; else: #Initially, min will store the value of head's data min = self.head.data; while(current != None): #If value of min is greater than current's data #Then, replace value of min with current node's data if(min > current.data): min = current.data; current = current.next; return min; #MaximumNode() will find out maximum value node in the list def maximumNode(self): #Node current will point to head current = self.head; #Checks if list is empty if(self.head == None): print("List is empty"); return 0; else: #Initially, max will store the value of head's data max = self.head.data; #If value of max is lesser than current's data #Then, replace value of max with current node's data while(current != None): if(current.data > max): max = current.data; current = current.next; return max; dList = MinMax(); #Add nodes to the list dList.addNode(5); dList.addNode(7); dList.addNode(9); dList.addNode(1); dList.addNode(2); #Prints the minimum value node in the list print("Minimum value node in the list: "+ str(dList.minimumNode())); #Prints the maximum value node in the list print("Maximum value node in the list: "+ str(dList.maximumNode())); Output: Minimum value node in the list: 1 Maximum value node in the list: 9 C#include <stdio.h> //Represent a node of the doubly linked list struct node{ int data; struct node *previous; struct node *next; }; //Represent the head and tail of the doubly linked list struct node *head, *tail = NULL; //addNode() will add a node to the list void addNode(int data) { //Create a new node struct node *newNode = (struct node*)malloc(sizeof(struct node)); newNode->data = data; //If list is empty if(head == NULL) { //Both head and tail will point to newNode head = tail = newNode; //head's previous will point to NULL head->previous = NULL; //tail's next will point to NULL, as it is the last node of the list tail->next = NULL; } else { //newNode will be added after tail such that tail's next will point to newNode tail->next = newNode; //newNode's previous will point to tail newNode->previous = tail; //newNode will become new tail tail = newNode; //As it is last node, tail's next will point to NULL tail->next = NULL; } } //MinimumNode() will find out minimum value node in the list int minimumNode() { //Node current will point to head struct node *current = head; int min; //Checks if list is empty if(head == NULL) { printf("List is empty\n"); return 0; } else { //Initially, min will store the value of head's data min = head->data; while(current != NULL) { //If value of min is greater than current's data //Then, replace value of min with current node's data if(min > current->data) min = current->data; current = current->next; } } return min; } //MaximumNode() will find out maximum value node in the list int maximumNode() { //Node current will point to head struct node *current = head; int max; //Checks if list is empty if(head == NULL) { printf("List is empty\n"); return 0; } else { //Initially, max will store the value of head's data max = head->data; //If value of max is lesser than current's data //Then, replace value of max with current node's data while(current != NULL) { if(current->data > max) max = current->data; current = current->next; } } return max; } int main() { //Add nodes to the list addNode(5); addNode(7); addNode(9); addNode(1); addNode(2); //Prints the minimum value node in the list printf("Minimum value node in the list: %d\n", minimumNode()); //Prints the maximum value node in the list printf("Maximum value node in the list: %d", maximumNode()); return 0; } Output: Minimum value node in the list: 1 Maximum value node in the list: 9 JAVApublic class MinMax { //Represent a node of the doubly linked list class Node{ int data; Node previous; Node next; public Node(int data) { this.data = data; } } //Represent the head and tail of the doubly linked list Node head, tail = null; //addNode() will add a node to the list public void addNode(int data) { //Create a new node Node newNode = new Node(data); //If list is empty if(head == null) { //Both head and tail will point to newNode head = tail = newNode; //head's previous will point to null head.previous = null; //tail's next will point to null, as it is the last node of the list tail.next = null; } else { //newNode will be added after tail such that tail's next will point to newNode tail.next = newNode; //newNode's previous will point to tail newNode.previous = tail; //newNode will become new tail tail = newNode; //As it is last node, tail's next will point to null tail.next = null; } } //MinimumNode() will find out minimum value node in the list public int minimumNode() { //Node current will point to head Node current = head; int min; //Checks if list is empty if(head == null) { System.out.println("List is empty"); return 0; } else { //Initially, min will store the value of head's data min = head.data; while(current != null) { //If the value of min is greater than the current's data //Then, replace the value of min with current node's data if(min > current.data) min = current.data; current = current.next; } } return min; } //MaximumNode() will find out maximum value node in the list public int maximumNode() { //Node current will point to head Node current = head; int max; //Checks if list is empty if(head == null) { System.out.println("List is empty"); return 0; } else { //Initially, max will store the value of head's data max = head.data; //If value of max is lesser than current's data //Then, replace value of max with current node's data while(current != null) { if(current.data > max) max = current.data; current = current.next; } } return max; } public static void main(String[] args) { MinMax dList = new MinMax(); //Add nodes to the list dList.addNode(5); dList.addNode(7); dList.addNode(9); dList.addNode(1); dList.addNode(2); //Prints the minimum value node in the list System.out.println("Minimum value node in the list: "+ dList.minimumNode()); //Prints the maximum value node in the list System.out.println("Maximum value node in the list: "+ dList.maximumNode()); } } Output: Minimum value node in the list: 1 Maximum value node in the list: 9 C#using System; namespace DoublyLinkedList { public class Program { //Represent a node of the doubly linked list public class Node<T>{ public T data; public Node<T> previous; public Node<T> next; public Node(T value) { data = value; } } public class MinMax<T> where T : IComparable<T>{ //Represent the head and tail of the doubly linked list protected Node<T> head = null; protected Node<T> tail = null; //addNode() will add a node to the list public void addNode(T data) { //Create a new node Node<T> newNode = new Node<T>(data); //If list is empty if(head == null) { //Both head and tail will point to newNode head = tail = newNode; //head's previous will point to null head.previous = null; //tail's next will point to null, as it is the last node of the list tail.next = null; } else { //newNode will be added after tail such that tail's next will point to newNode tail.next = newNode; //newNode's previous will point to tail newNode.previous = tail; //newNode will become new tail tail = newNode; //As it is last node, tail's next will point to null tail.next = null; } } //MinimumNode() will find out minimum value node in the list public T minimumNode() { //Node current will point to head Node<T> current = head; T min; //Checks if list is empty if(head == null) { Console.WriteLine("List is empty"); return default(T); } else { //Initially, min will store the value of head's data min = head.data; while(current != null) { //If value of min is greater than current's data //Then, replace value of min with current node's data if(min.CompareTo(current.data) > 0) min = current.data; current = current.next; } } return min; } //MaximumNode() will find out maximum value node in the list public T maximumNode() { //Node current will point to head Node<T> current = head; T max; //Checks if list is empty if(head == null) { Console.WriteLine("List is empty"); return default(T); } else { //Initially, max will store the value of head's data max = head.data; //If value of max is lesser than current's data //Then, replace value of max with current node's data while(current != null) { if(current.data.CompareTo(max) > 0) max = current.data; current = current.next; } } return max; } } public static void Main() { MinMax<int> dList = new MinMax<int>(); //Add nodes to the list dList.addNode(5); dList.addNode(7); dList.addNode(9); dList.addNode(1); dList.addNode(2); //Prints the minimum value node in the list Console.WriteLine("Minimum value node in the list: "+ dList.minimumNode()); //Prints the maximum value node in the list Console.WriteLine("Maximum value node in the list: "+ dList.maximumNode()); } } } Output: Minimum value node in the list: 1 Maximum value node in the list: 9 PHP<!DOCTYPE html> <html> <body> <?php //Represent a node of doubly linked list class Node{ public $data; public $previous; public $next; function __construct($data){ $this->data = $data; } } class MinMax{ //Represent the head and tail of the doubly linked list public $head; public $tail; function __construct(){ $this->head = NULL; $this->tail = NULL; } //addNode() will add a node to the list function addNode($data){ //Create a new node $newNode = new Node($data); //If list is empty if($this->head == NULL) { //Both head and tail will point to newNode $this->head = $this->tail = $newNode; //head's previous will point to NULL $this->head->previous = NULL; //tail's next will point to NULL, as it is the last node of the list $this->tail->next = NULL; } else { //newNode will be added after tail such that tail's next will point to newNode $this->tail->next = $newNode; //newNode's previous will point to tail $newNode->previous = $this->tail; //newNode will become new tail $this->tail = $newNode; //As it is last node, tail's next will point to NULL $this->tail->next = NULL; } } //MinimumNode() will find out minimum value node in the list function minimumNode() { //Node current will point to head $current = $this->head; //Checks if list is empty if($this->head == NULL) { print("List is empty <br>"); return 0; } else { //Initially, min will store the value of head's data $min = $this->head->data; while($current != NULL) { //If value of min is greater than current's data //Then, replace value of min with current node's data if($min > $current->data) $min = $current->data; $current = $current->next; } } return $min; } //MaximumNode() will find out maximum value node in the list function maximumNode() { //Node current will point to head $current = $this->head; //Checks if list is empty if($this->head == NULL) { print("List is empty <br>"); return 0; } else { //Initially, max will store the value of head's data $max = $this->head->data; //If value of max is lesser than current's data //Then, replace value of max with current node's data while($current != NULL) { if($current->data > $max) $max = $current->data; $current = $current->next; } } return $max; } } $dList = new MinMax(); //Add nodes to the list $dList->addNode(5); $dList->addNode(7); $dList->addNode(9); $dList->addNode(1); $dList->addNode(2); //Prints the minimum value node in the list print("Minimum value node in the list: " . $dList->minimumNode()); print("<br>"); //Prints the maximum value node in the list print("Maximum value node in the list: " . $dList->maximumNode()); ?> </body> </html> Output: Minimum value node in the list: 1 Maximum value node in the list: 9
Next Topic#
|