TheDeveloperBlog.com

Home | Contact Us

C-Sharp | Java | Python | Swift | GO | WPF | Ruby | Scala | F# | JavaScript | SQL | PHP | Angular | HTML

<< Back to C-SHARP

C# Tuple Examples

Create tuples to store immutable data. A tuple has multiple fields of different types.
Tuple. From the mountain's peak to the ocean's floor, look around the world. Snow, on the mountaintop, gives way to dirt and grass. Nature forms an unbroken chain.
A single atom attracts (and is attracted to) the next. Connections are everywhere. In a program, we combine things together (strings, ints). Tuples help us keep our logic clear and simple.
3 items. Please note that the Tuple type is a class. Once we create the Tuple, we cannot change the values of its fields. This makes the Tuple more like a string.

Part A: In this example, we create a 3-item tuple using the special constructor syntax.

Part B: We read the Item1, Item2 and Item3 properties and test them in if-statements. We do not modify them.

Types: When we create a Tuple, we specify the order and types of the fields. Try changing the types, and the number of types.

Info: We can have value types (such as int) and reference types (such as string) inside a Tuple.

C# program that uses 3 items in Tuple using System; class Program { static void Main() { // Part A: create three-item tuple. Tuple<int, string, bool> tuple = new Tuple<int, string, bool>(1, "cat", true); // Part B: access tuple properties. if (tuple.Item1 == 1) { Console.WriteLine(tuple.Item1); } if (tuple.Item2 == "dog") { Console.WriteLine(tuple.Item2); } if (tuple.Item3) { Console.WriteLine(tuple.Item3); } } } Output 1 True
4 items. Continuing on, a Tuple can have more complex items inside it, such as arrays. We can also pass the Tuple to other methods.

Here: In this example, we create a four-item Tuple with two arrays—string and int arrays.

Array

Then: We initialize those arrays inside the constructor invocation. Next we pass our Tuple variable to another method.

Var: Why does the example use the var keyword? The reason is pure syntactic sugar. Var shortens the lines in the code example.

Var
C# program that uses 4-item Tuple using System; class Program { static void Main() { // Create four-item tuple. // ... Use var implicit type. var tuple = new Tuple<string, string[], int, int[]>("perl", new string[] { "java", "c#" }, 1, new int[] { 2, 3 }); // Pass tuple as argument. M(tuple); } static void M(Tuple<string, string[], int, int[]> tuple) { // Evaluate the tuple's items. Console.WriteLine(tuple.Item1); foreach (string value in tuple.Item2) { Console.WriteLine(value); } Console.WriteLine(tuple.Item3); foreach (int value in tuple.Item4) { Console.WriteLine(value); } } } Output perl java c# 1 2 3
6 items. Tuples have different names. A sextuple has 6 items. To create a sextuple, use the Tuple constructor. You have to specify each type of the items in the type parameter list.

Warning: This can lead to programs that have complex and hard-to-remember type names. But the compiler will check them.

C# program that uses 6-item tuple using System; class Program { static void Main() { var sextuple = new Tuple<int, int, int, string, string, string>(1, 1, 2, "dot", "net", "Codex"); Console.WriteLine(sextuple); } } Output (1, 1, 2, dot, net, Codex)
Tuple names. In Visual Studio, we can hover the mouse over the var keyword. This shows that the var "Represents a 6-tuple, or sextuple." We also see the tuple's individual types.

Note: The naming of tuples is not important in many programs. But these terms can be useful when describing programs in a concise way.

Names: Beyond septuples, we only have n-tuples. These terms will make you sound really smart.

Quote: A tuple is an ordered list of elements. In mathematics, an n-tuple is a sequence (or ordered list) of "n" elements, where "n" is a non-negative integer.

Tuple: Wikipedia
Names: A 2-tuple is called a pair. A 3-tuple is called a triple. A 4-tuple is called a quadruple. A 5-tuple is called a quintuple. A 6-tuple is called a sextuple. A 7-tuple is called a septuple. Larger tuples are called n-tuples.
Tuple.Create. Next we invoke this method. We use Create() with three arguments: a string literal, an integer and a boolean value.

Result: The Create() method returns a class of type Tuple<string, int, bool>. It has three items.

Program: The code does a series of tests of the Tuple. It tests Item1, Item2 and Item3.

C# program that uses Tuple.Create method using System; class Program { static void Main() { // Use Tuple.Create static method. var tuple = Tuple.Create("cat", 2, true); // Test value of string. string value = tuple.Item1; if (value == "cat") { Console.WriteLine(true); } // Test Item2 and Item3. Console.WriteLine(tuple.Item2 == 10); Console.WriteLine(!tuple.Item3); // Write string representation. Console.WriteLine(tuple); } } Output True False False (cat, 2, True)
Internals. There is no elaborate algorithm devoted to tuple creation. The Tuple.Create method calls a constructor and returns a reference.

Tip: There is essentially no functional reason to ever call Tuple.Create. It might have more pleasing syntax.

One implementation of Tuple.Create: .NET 4.0 public static Tuple<T1> Create<T1>(T1 item1) { return new Tuple<T1>(item1); }
Class, read-only. Tuple is not a struct—it is a class. It will be allocated upon the managed heap. Its items like Item1, Item2 are read-only properties.ClassPropertyReadonly

Constructor: All items must be initialized with the constructor. We cannot change a property (like Item1) after the constructor has run.

Note: The properties Item1, Item2 and further do not have setters. We cannot assign them. A Tuple is immutable once created in memory.

Tip: This limitation can lead to more maintainable code that does not rely on field changes through time.

C# program that causes compile-time error using System; class Program { static void Main() { var tuple = new Tuple<int, string>(200, "Greece"); // This will not work. tuple.Item1 = 300; } } Output Property or indexer 'System.Tuple...Item1' cannot be assigned to--it is read-only.
Sort. Tuples can be sorted. A Tuple is a great way to encapsulate units of data. But it can make sorting harder. A Comparison delegate is needed.

First: This program creates a List and adds 3 new Tuple instances to it. We invoke the Sort method on the List.

Sort List

Here: We use the lambda syntax and pass in 2 arguments (a, b) and return the result of CompareTo on the Item2 string property.

Tip: To sort on the int, change the lambda to return a.Item1.CompareTo(b.Item1). A reverse sort would be b.Item2.CompareTo(a.Item2).

C# program that sorts List of Tuple instances using System; using System.Collections.Generic; class Program { static void Main() { List<Tuple<int, string>> list = new List<Tuple<int, string>>(); list.Add(new Tuple<int, string>(1, "cat")); list.Add(new Tuple<int, string>(100, "apple")); list.Add(new Tuple<int, string>(2, "zebra")); // Use Sort method with Comparison delegate. // ... Has two parameters; return comparison of Item2 on each. list.Sort((a, b) => a.Item2.CompareTo(b.Item2)); foreach (var element in list) { Console.WriteLine(element); } } } Output (100, apple) (1, cat) (2, zebra)
Return multiple values. This is an age-old problem. A method may need to return many things, not just one. A tuple can return multiple values (with less code than a class would require).

Note: This causes an allocation. Using ref and out parameters would be faster for a method that is hot.

Parameters

Note 2: A Tuple has advantages. It is a reference and can be reused. Less copying is needed when passed to other methods.

C# program that returns multiple values using System; class Program { static Tuple<string, int> NameAndId() { // This method returns multiple values. return new Tuple<string, int>("Satya Nadella", 100); } static void Main() { var result = NameAndId(); string name = result.Item1; int id = result.Item2; // Display the multiple values returned. Console.WriteLine(name); Console.WriteLine(id); } } Output Satya Nadella 100
ValueTuple. This type has clear advantages over Tuple. We can specify a ValueTuple by including values in an expression (with no type names).

Here: We create a 3-item tuple literal, and display its 3 items with Console.WriteLine.

ValueTupleConsole
C# program that uses tuple literals using System; class Program { static void Main() { // Go to NuGet, then search for and install System.ValueTuple. // ... This program will then compile correctly. var values = (10, "bird", "plane"); Console.WriteLine(values); Console.WriteLine(values.Item1); Console.WriteLine(values.Item2); Console.WriteLine(values.Item3); } } Output (10, bird, plane) 10 bird plane
ToValueTuple. We can convert a Tuple into its equivalent ValueTuple form. The ValueTuple will have some performance advantages, and also simpler syntax.
C# program that uses ToValueTuple using System; class Program { static void Main() { var tuple = new Tuple<int, string>(-20, "Bolivia"); // Convert tuple to a value tuple, and pass it to a method. Print(tuple.ToValueTuple()); } static void Print((int, string) items) { // Print value tuple. Console.WriteLine(items); } } Output (-20, Bolivia)
Benchmark, tuple. Consider 4 possible performance tests: allocation, argument passing, returning, and loading a field. We test the performance of 3 types with these 4 tests.

Version 1: Here we benchmark Tuple in the 4 performance tests. We only use 2-item objects in this test.

Version 2: Here we use a KeyValuePair struct instead of a Tuple class instance as part of the benchmark.

Struct

Version 3: This is newest and most modern of the tests: it uses the ValueTuple literal syntax.

Result: Tuples and ValueTuples tend to perform as well as anything in the tests. Tuples can be used as part of fast code.

C# program that benchmarks tuple types using System; using System.Collections.Generic; using System.Diagnostics; using System.Runtime.CompilerServices; class Program { static void Main() { Allocation(); Argument(); Return(); Load(); } static void Allocation() { // Time allocating the object. const int max = 1000000; var a = new Tuple<string, string>("", ""); var b = new KeyValuePair<string, string>("", ""); var c = ("", ""); var s1 = Stopwatch.StartNew(); // Version 1: allocate Tuple. for (var i = 0; i < max; i++) { var tuple = new Tuple<string, string>("cat", "dog"); } s1.Stop(); var s2 = Stopwatch.StartNew(); // Version 2: allocate KeyValuePair. for (var i = 0; i < max; i++) { var pair = new KeyValuePair<string, string>("cat", "dog"); } s2.Stop(); var s3 = Stopwatch.StartNew(); // Version 3: allocate tuple literal. for (var i = 0; i < max; i++) { var pair = ("cat", "dog"); } s3.Stop(); Console.WriteLine(((double)(s1.Elapsed.TotalMilliseconds * 1000000) / max) + " allocation, Tuple"); Console.WriteLine(((double)(s2.Elapsed.TotalMilliseconds * 1000000) / max) + " allocation, KeyValuePair"); Console.WriteLine(((double)(s3.Elapsed.TotalMilliseconds * 1000000) / max) + " allocation, Tuple literal"); Console.WriteLine(); } static void Argument() { // Time passing the object as an argument to a function. const int max = 10000000; var a = new Tuple<string, string>("", ""); var b = new KeyValuePair<string, string>("", ""); var c = ("", ""); X(a); X(b); X(c); var s1 = Stopwatch.StartNew(); for (var i = 0; i < max; i++) { X(a); } s1.Stop(); var s2 = Stopwatch.StartNew(); for (var i = 0; i < max; i++) { X(b); } s2.Stop(); var s3 = Stopwatch.StartNew(); for (var i = 0; i < max; i++) { X(c); } s3.Stop(); Console.WriteLine(((double)(s1.Elapsed.TotalMilliseconds * 1000000) / max) + " argument, Tuple"); Console.WriteLine(((double)(s2.Elapsed.TotalMilliseconds * 1000000) / max) + " argument, KeyValuePair"); Console.WriteLine(((double)(s3.Elapsed.TotalMilliseconds * 1000000) / max) + " argument, Tuple literal"); Console.WriteLine(); } static void Return() { // Time returning the object itself. const int max = 10000000; var a = new Tuple<string, string>("", ""); var b = new KeyValuePair<string, string>("", ""); var c = ("", ""); Y(a); Y(b); Y(c); var s1 = Stopwatch.StartNew(); for (var i = 0; i < max; i++) { Y(a); } s1.Stop(); var s2 = Stopwatch.StartNew(); for (var i = 0; i < max; i++) { Y(b); } s2.Stop(); var s3 = Stopwatch.StartNew(); for (var i = 0; i < max; i++) { Y(c); } s3.Stop(); Console.WriteLine(((double)(s1.Elapsed.TotalMilliseconds * 1000000) / max) + " return, Tuple"); Console.WriteLine(((double)(s2.Elapsed.TotalMilliseconds * 1000000) / max) + " return, KeyValuePair"); Console.WriteLine(((double)(s3.Elapsed.TotalMilliseconds * 1000000) / max) + " return, Tuple literal"); Console.WriteLine(); } static void Load() { // Time accessing an element. const int max = 10000000; var a = new Tuple<string, string>("cat", "dog"); var b = new KeyValuePair<string, string>("cat", "dog"); var c = ("cat", "dog"); var list1 = new List<Tuple<string, string>>(); list1.Add(a); Z(list1); var list2 = new List<KeyValuePair<string, string>>(); list2.Add(b); Z(list2); var list3 = new List<(string, string)>(); list3.Add(c); Z(list3); var s1 = Stopwatch.StartNew(); for (var i = 0; i < max; i++) { Z(list1); } s1.Stop(); var s2 = Stopwatch.StartNew(); for (var i = 0; i < max; i++) { Z(list2); } s2.Stop(); var s3 = Stopwatch.StartNew(); for (var i = 0; i < max; i++) { Z(list3); } s3.Stop(); Console.WriteLine(((double)(s1.Elapsed.TotalMilliseconds * 1000000) / max) + " load, Tuple"); Console.WriteLine(((double)(s2.Elapsed.TotalMilliseconds * 1000000) / max) + " load, KeyValuePair"); Console.WriteLine(((double)(s3.Elapsed.TotalMilliseconds * 1000000) / max) + " load, Tuple literal"); Console.WriteLine(); } [MethodImpl(MethodImplOptions.NoInlining)] static void X(Tuple<string, string> a) { // This and following methods are used in the benchmarks. } [MethodImpl(MethodImplOptions.NoInlining)] static void X(KeyValuePair<string, string> a) { } [MethodImpl(MethodImplOptions.NoInlining)] static void X((string, string) a) { } [MethodImpl(MethodImplOptions.NoInlining)] static Tuple<string, string> Y(Tuple<string, string> a) { return a; } [MethodImpl(MethodImplOptions.NoInlining)] static KeyValuePair<string, string> Y(KeyValuePair<string, string> a) { return a; } [MethodImpl(MethodImplOptions.NoInlining)] static (string, string) Y((string, string) a) { return a; } static char Z(List<Tuple<string, string>> list) { return list[0].Item1[0]; } static char Z(List<KeyValuePair<string, string>> list) { return list[0].Key[0]; } static char Z(List<(string, string)> list) { return list[0].Item1[0]; } } Output 8.3944 allocation, Tuple 0.4949 allocation, KeyValuePair 0.3457 allocation, Tuple literal (FASTEST) 2.16168 argument, Tuple 2.17551 argument, KeyValuePair 2.17316 argument, Tuple literal 1.84421 return, Tuple (FASTEST) 5.42422 return, KeyValuePair 5.32932 return, Tuple literal 2.44545 load, Tuple 3.27982 load, KeyValuePair 2.56207 load, Tuple literal
Notes, above benchmark. We see 4 separate tests. The tests use different numbers of iterations to test the types. The average time in nanoseconds for each operation is computed.

Allocation: In this test, one instance of a Tuple, KeyValuePair or tuple literal (ValueTuple) is allocated. The new-keyword is used.

Argument: Here, one instance is passed as an argument to another (not inlined) method.

Return: In this test, one instance is passed as an argument to a method and then returned.

Load: In this method, one instance is loaded from a reference stored in a List collection.

Performance results. The tuple literals (ValueTuple) are fastest when allocating. As arguments, the 3 types are all about the same speed. For returning from a method, Tuple is the fastest.

And: For accessing an item from the object, Tuple and tuple literals are the fastest (KeyValuePair is slower here).

Note: Thanks to Alex Vincent for helping improve the complex benchmark of tuple objects.

A summary. The Tuple is a typed, immutable, generic construct. That sounds impressive. Tuple is a useful container for storing conceptually-related data.
For important things, a simple class with commented members and helper methods is more useful. But Tuple shines as a short-term container.
© TheDeveloperBlog.com
The Dev Codes

Related Links:


Related Links

Adjectives Ado Ai Android Angular Antonyms Apache Articles Asp Autocad Automata Aws Azure Basic Binary Bitcoin Blockchain C Cassandra Change Coa Computer Control Cpp Create Creating C-Sharp Cyber Daa Data Dbms Deletion Devops Difference Discrete Es6 Ethical Examples Features Firebase Flutter Fs Git Go Hbase History Hive Hiveql How Html Idioms Insertion Installing Ios Java Joomla Js Kafka Kali Laravel Logical Machine Matlab Matrix Mongodb Mysql One Opencv Oracle Ordering Os Pandas Php Pig Pl Postgresql Powershell Prepositions Program Python React Ruby Scala Selecting Selenium Sentence Seo Sharepoint Software Spellings Spotting Spring Sql Sqlite Sqoop Svn Swift Synonyms Talend Testng Types Uml Unity Vbnet Verbal Webdriver What Wpf